AD-A170 145 REGENERRTWE SAMPLING AND HONOTDNIC BRRNCHING PROCESSES 11
’ ) SOUTH CAROLINA UNIV COLUMBIR DEPT QOF STA

D DURHAM ET AL. MAY 86 TR-148 RFOSR -TR-86- 0‘29
UNCLASSIFIED RFOSR 84-8156 F/G 12/1 NL




.
A
o5 I 10 e 2
= o (32
- = ' F
p'" T =
— I

=y IEN

MICROCOPY RESOLUTION TEST CHART

NATIGNAL  BUSEALL b STANLARDS [e &




4k “alg " O \, a4 Gl A A Py Py
1 - . " Oy - . AR EA A AT e S ar Sat ok dat dng helt S Sots Gk And

UNCLASSIFIED

SECURITY CL_ASSIFICATION OF THIS PAGE

l REPORT DOCUMENTATION PAGE

tb. RESTRICTIVE MARKINGS

D A 170 145 3. DISTRIBUTION'AVAILABILITY OF REPORT
A —

Approved for public release;
- JLE distribution unlimited

4 PERFCRMING ORGANIZATION AEPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

L1 s

taziszics Technical Reproro N 113 AFOSR-TR' o 6 -0 4 29

©a. NAME CF PERFORMING CRGANIZATION Bo. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
- . . (I1f applicable) . R ~ . ..
DJepartment oi Statistics i iAir Force Office of Scientific Research
6c. ADDRESS (City, State and ZIP Code! 7b. ADDRESS (City, State and ZIP Coae)
University of South Carolina Directorate of Mathematical and Information
Columbia, SC 29208 Sciences, Bolling AFB, DC 20332
8a. NAME OF FUNDIN3/SPONSORING Bb. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicabie}
AFOSR, ARO NM AFOSR~84-0156
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Bolling AFB, DC 20332 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
11. TITLE (/nclude Security Classifica::ion) 61102F 2304 A5
Regenerative Sampling and Monotonic Branching [Processes

12. PEASONAL AUTHOR(S)
Stephen D. Durham and Kai F. Yu

13a TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
Technical FAOM TO 1986 May 27
16. SUPPLEMENTARY NOTATION

—

17 CCSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. Sequential design; play-the-winner, branching process,
martingale, estimation, consistency and conditional
i ! hvpothesis testing.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

o A regenerative sampling plan is proposed for the sequential comparison of two
populations having positive integral response. It is designed to be both an extension and
an improvement of the play-the-winner rules for binary trials in the sense that a much
. wider variety of responses is allowed, the fraction of inferior selections approaches zero,
S and the play-the-winner rule is contained as a special case. Almost sure convergence and
mcment convergence in the pth order is studied for the fraction of inferior selections and
for a maximum likelihood estimator of the mean response. A conditional test of hypothesis J

| is given for the binary case. DT'C

ceLECTE

DA
T

%

t I .
A
L) H

ElLE

!! 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSI N
v, M'
e uncLassIFIED/UNLIMITED b same as aer. O oric users O Unclassifed D
- ®
L 22a. NAME OF RESPONSIBLY INDIVIDUAL . 22b. TELEPHONE NUMBER 22¢c. OFFICE SYMBOL
:_-.:’ Y B Wood c e (Include Area Code)
- ajor Brian w. Woodrutif e apee
N nad (202) 767-5027 NM
' DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED

A‘.
-
‘e

SECURITY CLASSIFICATION OF THIS PAGE

a ¢
]
ot

P




REGENERATIVE SAMPLING AND MONOTONIC BRANCHING PROCESSES

by
Stephen D. Durham and Kai F. yu®

University of South Carolina
Statistics Technical Report No. 118
62L05-5

DEPARTMENT OF STATISTICS

The University of South Carolina
Columbia, South Carolina 29208

Approved for

publia .
distribyt g, release;

Unlimis ez,

‘. - ‘. “.. ’.'. - - e ...’.,~ , ._-. C et e e et e




e s g e ATl at o-d mem arl AL aid AR e ARl sl ath and e ot et s oA aha il St aiC ol M

3 REGENERATIVE SAMPLING AND MONOTONIC BRANCHING PROCESSES
- by
o Stephen D. Durham and Kai F. yu*
ot
,:i- University of South Carolina
b, Statistics Technical Report No. 118
62L05-5

REREL

A
o

A

May, 1986

Department of Statistics
University of South Carolina
Columbia, SC 29208

*
Research supported in part by the United States Air Force Office of Scientific

Research and Army Research Office under Grant No. AFOSR-84-0156.

T esaaee

I RTIFITUETC RESEARCH (AFST)

STNINCITAL TC OTIC

T

-".\1 ’

"y L.z teennieal report has beenreviewed and i3
'.:-; sonvoved for public relense IAW AFR 190-12.

;.:. Sletrvibygtion {ounlimited.

o UUUUTHEN J. KZTTER

“hief, Tvennicul Information Divisiea

-

'I

e

-

-
b e e e e e e e e T e et e e e At At A Rt
« .‘..“_.'_.“_.“_._."'.'_:_.-'_“4-_. R T L RESAEIAR & ENE PR g O LI R A AP s P N N N W,
“ -'..‘.'»'.'h‘f'{“.'-'—-‘-*n'.‘.'-J'.‘a‘-‘f'i"-‘a B R I A A T IO S '{\{‘u‘-‘n“-‘ GRS S DA T O A Y

V. P V. PV, . W P VL VRPL L PGV TR LI, PR LIS O VSV SFR A, PRy WS azaSlale A.‘LAJ'A_“A.\A_‘(L.\‘.’\A_‘ALAA.".l’(A.'L' I\_\A.'\A.'{.IL.' N




N B 4 - \ . Pl a2+ adly . R R VR TR TV TN Ve e ¥

Abstract

A regenerative sampling plan is proposed for the sequential comparison of
two populations having positive integral response. It is designed to be both
an extension and an improvement of the play-the-winner rules for binary trials
in the sense that a much wider variety of responses is allowed, the fraction of
inferior selections approaches zero, and the play-the-winner rule is contained

as a special case. Almost sure convergence and moment convergence in the pth

order is studi d for the fraction of inferior selections and for a maximum

. likelihood estimator of the mean response. A conditional test of hypothesis is

given for the binary case.
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Section 1. Introduction

The problem of sequentially sampling two populations with unknown means so
that the sum of observations is maximized has been formulated by Robbins
(1952). For the binary case (success/failure trials), play-the-winner
strategies have been shown to produce better results than a random selection of
populations, in the sense that the fraction of inferior selections approaches
the constant qn/(ga+qp) where qp < qg are the failure probabilities (Robbins
(1952), Zelen (1969), Wei and Durham (1978)). A randomized play-the~winner
plan has been used for the assignment of patients to treatments in a controlled
clinical study of a potentially life-saving medical procedure because of its
tendency to put more patients on the better treatment (Bartlett et al (1985),
Cornell et al (1986)).

The purpose of this paper is to present a sampling procedure in which the
fraction of inferior selections approaches zero, in general, whenever the ob-
served response is a positive integer-valued random variable. The main idea is
to generate new samples on the two populations according to the cumulative
response observed on each, as is done with the play-the-winner rules, but modi-
fied so that the sample sizes for the two populations are independent. The
successive samples then correspond to the generations of two independent
Galton-Watson branching processes and the attendant limit theory applies.

Based on the observed successes on the two populations with a binary response,
a conditional test of hypothesis is given along with explicit bounds on the

power function. While other methods for dealing with the binary trials exist
in which the fraction of inferior selections go to zero (Bather (1981)), they

d» not seem to have as tractable an inferential structure.




Section 2. Regenerative Sampling with a Positive Response

A sequence of stopping times called generation points are defined for the

observations on each population independently of the cobservations on the other
population. For the population 1 = A,B, let Ri,R;,Ré,... be independent
and identically distributed (i.i.d.) random variables taking positive integer
values having a common mean, m, . The Ri correspond to the observed

responses on population 1i. Beginning with an initial sample of size u,, a

positive integer, the sequence T; of generation points are defined hy

(1)

Note that the generation points are defined separately for each population
and the detailed specification of the order of selection is left open. It will

be seen that the observations between g¢ eration points
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form the generations of independent Galton-Watson branching processes for
i = A,B, regardless of how the samp’es are ordered.

The sampling scheme with random sampling order within each generation
may be visualized as an urn model:
Two urns are given; Urn I, a sampling ui., and Urn II, a holding urn.

Initially, u, balls of type A and u, balls of type B are placed in the

B

sampling urn. To begin the first generation of sampling, a ball is drawn at

random from the sampling urn and its type notel. An observation is then made
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on the population indicated and the response, R > 1 1is recorded. A total of

R balls of that type are then placed in the holding urn. The process is re-
peated until the sampling urn is empty. That is the end of the first genera-
tion of sampling. To begin the second generation, all ﬁhe balls in the holding
urn are placed in the sampling urn and sampling begins anew. The analysis to
follow is based on the ball populations at those points where the sampling urn

becomes empty. They are the generation points, T, -

Theorem 1: Assume m, > mB. Then as n tends to infinity, the fractions of

inferior selections

approach zero with probability one.

Proof. Temporarily suppressing the population superscript i for A,B let

n el T Tn be the nth stage sample size. Then Zn may be expressed as

X. n +..0+ XZ where X
Ly n—~1’

Zn—l’ n » 1. Thus Zn represents the nth generation of a Galton-Watson

= RT 4k are iid with R
n-1

and independent of

k,n 1

branching process initiated by 2, = u ancestors and having offspring distri-

0
bution equal to that of R (Harris (1963)). The generation points

+..04 Zn are the cumulative progeny up to the nth generation. It

n+l 0
follows that the expected generation size is
am’” if m< ®
(4) EZn = , M = ERl
© if m= o

and the average sample number (ASN) is
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if m<eand m> 1
© if m= =

To prove {3), we first note that by assumption m,Z > m, > 1, we can choose an

A B

integer M so big that

. A

(6) m, = ER I > .

n [RASM ] mB
‘ n

* A . * & . .
et R =R 1 and define 7T ,2 in a similar manner with wu, = u,.

n n A n'n * A

(R <]

Then for all n > 1

*
(7) 'I‘A >T .
n n
*
2, 2,
Next, it is well-known that {~H, n>1l} and {—H’ n>1} are martingales.
m_ ny
*
2, 2,
Since E e S and E = U <> by the martingale convergence
m
*
*
%0 % .
theorem, Y and ) converge with probability one to random variables W
m r
* B

*
and W respectively as n tends to infinity. Furthermore, since R < M,

*
W is a strictly positive random variable with probability one. 1In view of

*
T n . .
ndl 1 -(n-j) _* ]
(8) m2+l T om, jio m, Zn—j %

n

Similarly if > 1, 2 /mn converges to WB/( -1) with probability one and
Y it Ty n g P

if my = 1, Tﬁ = nu,. Next, choose X such that X e(mB,m*); then by (7)
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7 /m? converges to w*/(m*—l) with probability one as n tends to infinity.
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N M )
%‘ which goes to zero with probability one as n tends to infinity. This also
N B _ _ A . 1 .
:Z{ implies that Zn = o(Tﬁ+l) = o(Tﬁ + Zn) with probability one since
o .

) n+l n

¢ (10) >

™ TP ™ 4 zP

CR n+l n+l n+l n

.;‘\":'*.

L

::;{ As a result, it follows that

p

A
= g g
L (11) =

2™+ 22 -4 2P

s n n n+l n

-j?j converges to zero with probability one as n tends to infinity.
Cf;' The following corollaries show that favorable comparisons need not be res-
S tricted to the same generation points on the two populations.

d d
A B CL .
Corollary 1: If m, > m for some positive integers dA and dB’ then

(12) 1
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converge to zero with probability one as n tends to infinity. 1In particular

if my <m o=, then for any positive integer 4,

B
Tnd
T v
n nd
(13) 4 TB
(n+t1)d = ‘nd

S
o
=

converge to zero with probability one as n tends to infinity.

-

[' dA dB

:::f Corollary 2: 1If my > my for some positive integers dA and dB’ then as
ps n tends to infinity

-

& B % 9

ndB/TﬁdA = 0llmg /my )

..."_..: d
S B , _ % %n
('I’I(Bn+l)dB - TndB)/(r?n+l)dA - by ) = 0((mm, M)

with probability one.

Corollary 3: 1If m, > mg, then for any p»> 0, as m- =

E(_._n__)p 5 0’
™ 4
n n
(15) 4
2D o
E( )¥ >0
ZA + ZB
n n
dA dB
If my > My for some positive integers dA and dB’ than for any p > 0,

as n »®
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Remark 2.  The independence of {R?,R?,...} and {R?,Rg,...} is not

- necessary for the results in Theorem 1 and Corollaries 1,2 and 3 to hold.

:~J The results also include the cases when either my=® or my = 1 or both.
- Remark 3. 1If there are K processes {R?,Rg,...}. cany {Ri,Rg,...} with
Sii means mA,...,mK respectively, and if m, > max(mB,...,mK), then the results
:if in Thecrem 1 and Corollaries 1,2 and 3 will still hold when TB and ZB are
bt
}7' replaced by T 4 P ot e and 2% + AR 4o+ 2K respectively, and the
lO . A dg
e conditions in the corollaries are changed from that of my > my to that of
- d d d
e n > max(m B ., m K)
e A B s
&
=
SN

.
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7
B
rlndB
E( )P >0,
.+
nd nd
A B
(16) 4
" (n+l)dB ndB Vs o
» e r
1 - + -
(n+l)dA ndA (n+l)dB ndB
If «=m, > My then for any positive integer d and any p > 0, as n > =

A

TB

nd

P

E{ ¥ > 0.
T+ TB
n nd

P

E( (n+1)d nA )p 50
A -7
n (n+l)d nd

Remark 1. It may be expected that E(Ti /Tﬁ )P 5 0 under general conditions.
Eowever we have only been able to prove it in the very special case of success/

failure trials (see Section 4, Theorem 6).
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Saction 3. Estimation in a Monotonic Branching Process

In this section w2 shall study the estimation of somce of the pare

ameters of

thie s~parate populations, specifically the mean responces m, and the
P pop i

variances o% , 1=A,B. As each separate population follows a Galton-Watson

branching process, we shall suppress the superscript and subscript i.
2 b

Let

R/Ryuees be i1id positive integer—valued random variables with ER = m., Let

u be a positive integer and

(18) T, =0, Zy = u and T, = u.

2, =R, g +...t Ry
n-1 n
\ r —
(19; Pn+l u + Rl +.. .t RT
n
= ZO Foeot Zn'

otice that Z. < Z, <2, ... , and for this reason we shall call this

0-"1-"2

Calton-Watson branching process a monotonic branching process. For each

n >0, let F ke the o-field generated by {ZO,...,Zn}. For the mean m,

wo ghall consider the fellowing two estimators

T ol
‘n - T ’
(20) n
=L “ni1
NS
n

iome ot estinsters are well-known in the literature.  See Dion and Keiding

~

(1775 anl the refzrences therein. The estimator m is a maximum likelihood

ot i well-bnowa.
n
- - L. . . . P T T BN I .
e a4 altet et At AT A T ML o PP TR N WD W SN UL PN R

~

cr ¢f m. The following fact ccncerning the strong consistency of m




Fact 1. Assume m < @, Then with probability one, as n - =,

~

(1) m > m,
(21)

ii) m_ - m.
(ii) m

~

In the following, we shall study the Lp—consistency of ™ and ﬁn.

Definition. ©  1is an gp—gonsistent estimator of © for some p > 1 if as

n - «,

(22) E[(én—e)lp > 0.

To establish the Lp—consistency, we first develop a few results which are

interesting in their own right.

Theorem 2: Assume that ERC < « for some p2l. Let a-= max(l,é). Then
l1-a Zn+l
(23) {Jz; “(5=-m]|® n 31} is unifornly integrable.
n
Proof. We decompose, for some K,
(24) Ry-m = (RnI[RngK] - ERnI[RngK]) * (RnI[Rn>K] N ERnI[Rn>K])

i

X + Y . say.
Since ERp < o, for all € > 0, we can choose K so that

(25) Elv_|P <e.

First, let s > max(2,p). Then by the Marcinkiewicz-Zygmund inequality (see,

e.g. Chow and Teicher (1978), p. 356}, for some constant By

AT TR WY e T T L
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- 10
B
i
B
L~
\ _:::_ )grn+l+. . .+XTn+l S
Eab (26) E a
. Z
-.'.- n
,iif = EE(—l~|XT UESRt> S 18
T 85" n n+1l
%
s 1 2 2 s/2
AN < Bs E as E( lxT gpteeet XT I |Fn)
Z n n+l
n
0% ,5/2-1
) s . n s s
% <B® E E(| R |Z|F.)
:::: as XTn+l XTn+l n
n
o
e Y5
e < BIKE zi(z al ¢ BoK °¢ @
¢
i Therefore
e Xpo 44X p
-t n n+l . . .
(27) 3 ,n>1 is uniformly integrable.
- Z
: n
\ .
S Next, consider the Y's. By the same Marcinkiewicz-Zygmund inequality, we have
3 ‘\‘
N YTn+1+ ..+YTrl+1 p
= (28) E

O B804
:)N

a

o <P E-L B+ ¥E PP R
5 P g% n+l
o n
N p L p P
@ B E(—— E(]Y ¥ oo+ |y |¥|F )y, if 1 <p <2,
- b zap Tptl n+l
) .,-P\ n
3 <
R /21
; o, p n p p 3
. 4 E( “ap (Yp 115+ +|YTn+1| |F)), if p> 2,
_'.. n
L o zZ b
<BL € E-— = ¢ B,
o P Zn P
.T which can be made arbitrarily small. Therefore
.-
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Y + +Y, p
Tn+l n+l
(29) 3 , n 21 is uniformly integrable.
Z

n

Combining (27) and (29), we have the desired result (23).

Corollary 4: If ER® < ® for

some 1 2 1, then

(i) {[&n -mlP, n > 1} is uniformly integrable.

(30)

(i1) {|m_- nfP, n

Proof. (i) Since |m - m|P

IN

> 1} is uniformly integrable.

|z1"a(Egil -m P, (z >1 and a <1)
n Zn ' n = = !

the result follows from Theorem 2.

(ii) By (i), {|ﬁn|P, n > 1} 1is uniformly integrable. We note that

Tat1  Tntén Zn Zq
(31) T =_—T_=1+T'<'1+Z
n n n n-1
The1
Therefore {( T P, n > 1} 1is uniformly integrable and it follows that
n
Thy ™V p
(32) {|—F—-m| , n2>1} is uniformly integrable.
n

Corollary 5: Assume ERP <

(i) Ejm - m|P >0,
(33)
(ii) Elm - m|P » 0,

for some p > 1. Thenas n-» =

Lp—consistency,

Lp—consistency.

Proof. The result follows from Fact 1 and Corollary 4.

Corollary 6: 1If ERP < = for some p 22 and 02 =Var R ¢ (0,=),

then as n -» e,

Z
L 1 ©
(30) E|zf (B )P o P T |x|P S

Z
n

—x2/2

dx,

{2n
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and for any positive odd integer j < p,

L 2 .
(35) E(zH(-2L oI 5o,

n z
n

Proof. Since asn >«

Z
L "n+l
{36) Zn( Z
n

- m 3n0,6%)

(See e.g. Nagaev (1967) or Dion (1974), the results follow from Theorem 2.
Next we shall establish a result analogous to Theorem 2 for T, We need

the following elementary lemma.

Lemma l: Let VeVire-- be iid positive random variables with P[V > 1] =1
and EV=m> 1. Then for all g > 1, there is an o with « ¢ (0,1) such
that

n d
(37) sup E(g—————) " < o
n>1 Vl+...+Vn

Proof. By the strong law of large numbers, as n - ®

n 1
(38) Vr..+v. " n¢ !
1 n

with probability one. Since (n/(Vl+...+Vn))q <1l,as n-o®
(39) E(—2 9,1,

*
by the bounded convergence theorem. Therefore there is an ¢ < 1 and an

integer n, such that for all n > n

0 0

__n___,9g
Vit...+V )T
1 n

Since E(n/Vl+...+Vn))q <1 for n-= 1,...,n0, take

(40) E(

n

0 q
.+ )7

(41) o= max(a*,s(l—)q,...,a(v —
)

V1 1

and the result follows.
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Theorem 3: Assume that ERP < = for some p>1l. Let a-= max(%y ). Then

o Rl

for any r < p
(42) { —_—

Proof. Let r be less than p. Choose s such that s >1 and r < s < p.

r
, N> 1} is uniformly integrable.

Then by Minkowski and Holder inequalities

(43) [E. _n_+l_.__

T —u—an s]l/s

" [E Zk—l}as M2y
Za
k—

s]l/s
1

21

: [
r |E
k=10 |?

Let g = asp/(p-s). Then by Lemma 1, for some 0 < o« < 1,

p-s| sp 22y
a
Zk—

I

§§2A9:§[
E

p]l/p

n-1 1

Z Z Z
- -1 %n-
G % B(B(GEE 25 TE L))
n-1 n-1 "n-2
2 Z
- 2
(44) - 6L (R R )
n-2 n-1
Z
< o E(Zk—l)q < ap—k )
n-2
By o
By Theorem 2, sup(E]———g———~|p)p < C for some finite constant C. Therefore
k>1 Z
= k-1

from (43) and (44), we have




-

L L

[0 Tl WP S g

R
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[E Tn+l—u—an s]l/s
a
Zn—l
(45) S n(p-s)
n o nk.s 1-« P ¢
<c £ (7% SPoc <
ket p-s p=s

and the result follows.

Corollary 7: 1If ERp<co for some p>»l and a = max(%vé), then for any r<p,
1-a, Tna1 ™ r
(46) {ITn (—— - m)|", n > 1} is uniformly integrable.
n

Proof. 1In view of
T -u
1-a, n+l
(47) !Tn (T m)l < l————-—-a—

the result follows from Theorem 3.

Corollary 8: If ERP ¢ ® for some p22 and Var R = 02 €(0,»), then for
any r<p, as no-> o
2
p T ..-U - r -x /2
(48) ElTri(L;l—- O A Ixle” 7% g
n 2n
and for any positive odd integer j < p,

T -u
(49) g(ri(ntl —

T
n

m))j -+ 0.

Proof. Since as n » «,

D

LT .-u
-2 ) s N(0,69),

n T
n

(see e.g. Dion (1974) or Jagers (197.)); the result follows from Corollary 7.

Remark 4. We conjecture that the r in Theorem 3 and Corollaries 7 and 8

..........
------------------
““““

W




K
2

w
.
",
>
o
.

x

'.'l'l.l,l“'
e e e

-

a3 v ¥
LR N U &

can be improved to p,
and Corollary 7; and j < p
In the remainder of this section we shall assume that Vvar R =

is finite and positive.
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in which case p > 1

n Z Z
A T
k=1 k-1 Zn-1
(50)
~ n Z
(i) o> =2 I z_ (% -m?
k=1 k-1

can replace p > 1

can be chinged to j < p

We shall study the following estimators of o¢°:

in Theorem 3
in Corollary 8.

02 which
2

The consistency of these estimators is given in the literature and we collect

them into the following fact.

Fact 2.

(1)

(51)

(ii) Dion (1975). As

Heyde (1974). As n o=, o o o

~

2
n->~ g -9
n

with probability one.

in probability.

In the following, we shall study the Lp—consistency of these two estimators

of 02.
2p 11
Theorem 4: Assume that ER™ < @ for some p > 1 and let a = max(i,g).
Then
(52) {Inl_a(ai - oz)lp, n > 1} is uniformly integrable.
Proof. For each k > 1,
Z
(53) E(Z, (- m% - o
k-1
1 2 2
= s/ E((2, - mz, )7[F_;) - ¢ = 0.
k-1
Since ERZP < ®, Theorem 2 implies the uniform integrability of
%k
(z, j(G—— - m) 2)P k> 1}. By Lemmas 1 and 2 in Chow and Yu (1984),
k-1

LR <
R AL i
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...............
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1 D 2y 2 2
(54) {|—5 I (Zk_l(———— -m)” - ¢ )Ip, n > 1} 1is uniformly integrable,

n k=1 k-1

which is t'.e desired result.

N =
Lo Rl

Theorem 5: Assume that ERZp < o for some p > 1, and let a = max(z,=).

Then

(55) (Jn'8(E2 - )P, n 2 1) is unifornly integrable.

Proof. We decompose

(56) nTT(FE - &%)
n
n Z Z n
-lirg GE-n-d -5 g
n- k=1 k-1 n~-1 k=1
n Zn—mZn_l
—2 v (z, -z, om0l
kel KRl

In view of Theorem 4, it suffices to show the uniform integrability of

-

(1) {Ilg(m - zbn )2 1 Zk~1|p, n > 1} and
n n-1 k=1
10 22,
(i1) {] = © (g - mg_ (=P, n > 1}.
n k=1 n-1

For (i), by Theorem 2 (for some finite constant C) and by Lemma 1 (for some

oa € (0,1)) and (44) we have

mz -Z n 7
(58) E(—((—-D)%)P( § E)P)
n°P Z° k=1 "n~-1
n-1
10" Y1 p ™% 2p
=E 5 (I 7" B(l———[7[F )
n®P k=1 “n-1 z?
n-1
n z n Z
¢S p(z NP ¢ £ (1 (sEHP) /PP
nP 1 "n-1 nf 1 n-1




n
< £ (L a(n—k)/p)p < c 1

>0, as n »

P g n®P (1-,17P)P

yielding (i). For (ii), by the same results used for (i), we have

59y Lo g| (22 _y) (Zn_mzn—l)izk—l P
n®P k=1 Jzk—l iz 1 a1
n Z, —mZ Z_-mZ Z
1 (I (E| k k—llpl n n—llp( k—l)p/Z)l/p)p
n®P k=1 {z iz Zn-1
k-1 n-1
n Z, —mZ Z_-mZ Z
<11 (g k k—1|2p)l/2p(E| n n—1|2p( k—l)p)l/Zp)p
= _ap Z__
n 1 Jzk—l Jzn—l n-1
4 1 L n Z,
b < _CE_ C'E(X(E(Z_k_l)P)l/zp)P < g i/z 20 as no-o o
{ n 1 %pe1 n®P (1-/“P)P
3
[ yielding (ii). And this completes the proof.
3' Corollary 9: If ERZp < @ for some p > 1, then
L Lorollary
s ~
. 2 2\p . . .
q (i) {Icn - ¢“|¥, n > 1} is uniformly integrable
- (60)
b, L =2 2.p , . .
E! (ii) {Ion - ¢"|¥, n > 1} is uniformly integrable.
b"‘
L~ 2 , ~2 2
t; Proof. Let o be either o, Of g . Since a 1,
L
: nl—alai - ozl > ldi - ozl and the result follows from Theorems 4 and 5.
:Z Corollary 10: 1If ERZp <= for some p>1, thenas n»- o
" Lorol ary
- (i) E|ci - czlp > 0, Lp—consistency,
e (61)
2 (ii) E]Gi - cz|p -0, Lp—consistency.
- ) ~2 -2 2 . cq .
L. Proof. By Fact 2, o and o, converge to ¢= in probability as n - =,

Together with this, Corollary 9 gives the Lp—consistency.
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Corollary 11: 1If ERZp ¢ © for some 1 <p<«<2, thenas n=- =
p-1
(1) ElnP (- APoo,
(62) p-l
- (i) E|n P (¢ - 9 |P > 0.
O n
Proof. By Lemma 1 of Chow and Yu (1984) and (53), as n » =«
. p-1
(63) ElnP (s> - o*)|P > 0.
By (56), (58), (59) and (63),
o pl
-2 2
._‘:.._ Elnp (on— o )]p—>0.
a: 2
'.:}:' Corollary 12: If ER P ¢ o for some p22, thenas n»-» o
o P —x2/2
Lo -
. . (64) EInZ(Urzl _ cz)lp > 22 ch J-_m IX e dX;
{2n
g and for any positive odd integer j < p,
. : L _ 3
o (65) E(n*(a% - ¢*))7 5 0.
-‘:'
Consequently as n » =
03 (66) E(52) = o + o(l),
s In
Qf! i.e. the bias is of smaller order than n—%, and
o 2
e 2y = 290 1
:::f (67) Var(on) ==t O(n)'
.’ Proof. Heyde (1974) has shown that as n > e«
S L D
-:‘:-\. (68) n2(02 - 02) - N(O,204).
s n
N
"‘ By Theorem 5, the results follow.
o
g
o

s
[
w
.
.
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Serotinny 4. Iterative Play»tn Winner Se Ling
s a nhtarral extensicn of the Z221ea (1969) appreoach to binary comparicons
3 '

lac Pj eae]l to the nuter of trials on treatment i, 1 = A or B, until the
firgt failvre is cleerved, So the initial generation does not correspond to
eny sot of tvials but enly to the mtor of success runs to be observed in the
fitst ceroration of sampling on treatment 1. The responses, Ri, have a
goomolric alstiibution with finite mean o= l/qi and finite variance

<, - (l~qi)/gi where q; is the prokability of failure. 1he RSN is
Ui(1~3§)/qT(l“qi) over the first Ti+1 - uy trials corresponding to genera-
tions 1 through n. Note that at least nu, trials are run on treatment 1,

tein thoro ig no aboolute upper bound on the actual nuner of trials for any

n > 1.
1ue ectimator of p; = 1 - dq0 Py = 1 - l/mi, reduces to
i 3 , .
(7. - Ui)/(ql§l - ui) which equals the cumulative nurber of successes
il It

¢Coid A by the nunbir of treatments on trectment i1 in this scheme. The
fraciion of inferior treatment sclections is small if n  is large almmost
surely anl in tho Lp sense. An approximate distribution is available.
Sinece wi(r lim Z;/m?) has a gamma distribution with moment generating

Ino®

S -Uu.
function E(e ') = (1 + s/u,) 1 s> 0, (Harris (1963)), 2u, has a chi-

couaved distribution with 2ui dagrees of freedom. Thus the ratio,

Co(r)i7 /¢ ()10, has an approxiwate F  distribution wit: 2u, and 2u

et "B Ii A B

s . . \ . n-1 n-1

doorees of frecdom, where the constants are Ci(n) = pi(qi ) /(1 — qi ),
n

i = M,k PFurtherwore, by Corollary 2, li/qﬁ = O((qA/qB) ) with probability

e orens € chows that Lp convergence obtains as well.
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Theorem 6: Assume that 1/q, =m > m, =1/q,. If P[Ri = x] = (l—qi)x~lqi,

x=1,2,..., i=A,B, then forany p> 0, as n- =

ZB

(1) BP0,
Z
n

Proof. Without loss of generality, assume that Uy = ug = 1 and that p is

an integer. Then

EEP = 1 P10 g

%=1 B B
< Eox(xtl)...(x+p-1)(1-gH)* I = p1 go7P
B B B
x=1
l .p 71 nx-1n
E(—)" = I — (1-q,)
ZA x=1 xP A A
n
P n.x-1n ] n.x-1 n
= I —(l-g)" "gq. + I == (1-q,)
x=1 xP A A x=p+1 xP A A
n - 1 n.x-1n
<pg, + £ — — (1-g,)" g
A prl x(x-1) {x-p+1) A A
np
n Oy lcg 4y
< Pa, 0 , for some constant C.
l—qA
Hence as n » o
Zi p B.p 1
(1) E(:X) = E( n) E(jg)‘ ’ .
yA Z
n n
Next
E(iB )P
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3

i

Lo

- -B.p,1/p B,p,1/p,p

&} < UEZP) P (a2 )PP

m p,1/p -np,1/p,p
< (1 + (plg.f) + +(p!qB ) )

, 9 -1 _p! ~(n+1l)p
= pHT ) S g
dp -1 (qB -1)
Ti'l p B p_.,1.p
(i) E( »CE(T )T E(R)
Z
n+l n
np
D! 1 n quA log dy
(pg, —————) » 0 as n - =,
T ~l_l)p (n+l)p A 1-"
95 9 9
A % % -
Corollary 13: Assume that 9y =M, > My =qp for some positive
integers dA and dB’
. B A \p -
(1) E(AndA/an )¥ >0 as n -

(i) E(T2, /7%, )P 50 as noe
n I

that a similar convergence obtains in non-geometric cases but no proof is

known.
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Femark 5. The delicacy of the above result is noteworthy. It seems plausible

Femark 6. Certainly other selection procedures exist for the present case,
Bather (198l1). However direct comparisons are difficult because the sample
sizes are random in regenerative sampling but are fixed in Bather’s study.

The actual implementation of the trials is only mildly constrained by
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by the requirement that the generation points Tﬁ, Ti be reached o.

both treatments for some fixed value of n. It is interesting that if it is
assumed, in addition, that every generation point Ti,...,Ti up to the nth
be reached on both treatments i = A,B before proceeding to the next, then
the present scheme can be visuclized as an adaptive iteration of the Zelen
A B

al,Zl) = PW(uA,uB) denote the number of trials

scherne. In particular, let {
on the two treatments in a Zelen type experiment which is stopped when wup
failures are observed on treatment A and Uy failures are observed on

treatment B. Then the successive sample sizes are generated recursively by

(Z?,Z?) = PW(uA,uB), (Zi,zﬁ) = Pw(Zi—l’ZE—l)’ k =2,...,n. The urn scheme
presented in Section 2 can be adapted to the present case in which the total
response is spread over a number of trials. As before, select a ball from
the sampling urn and note its type. Administer the indicated ftreatment and
cbserve the response. If it is a success a ball of the corresponding type is
added to the holding urn and the selected ball is returned to the sampling
urn. If a failure is observed then the selected ball is simply transferred
to the holding urn. As before, a generation is complete when the sampling
urn becomes empty.

In view of Fact 1 in Section 3 as applied to the present iterative
play-the-winner design, it is plausible to base a test of hypothesis about
the failure rates g; on the number of successes observed over n, sampling

generations, 1 = A,B. In particular, f.r positive integers a test is

nAInBI
proposed for

A
(69) HO. dp 2 9y Vs H:qg, < dg

based on the conditional distribution of SA =7

N given § = sy SB,

L won R gt S S St eSS s o e v i ol utats sy syl At aeus S - Dinli el el Ak Anihdunl il




B

where S® =22 - u . The random variables s® and sP are independent and

g

represent tie number of successes on treatments A and B over trials
1,2,...,7° and 1,2,...,70 respectively. if n, =n, =1 and u, = u = £,
the test is equivalent to that of Zelen (1969).

Since the samples on the two treatments are independent and since the
geometric distribution is preserved under the composition of probability
generating functions in the Galton-Watson branching process (Harris(1963)),
SA,SB and S have negative binomial distributions and the conditional distri-

bution can be presented explicitly. For r a non-negative integer and

k=0,1,...,r,

(70) g(k|r) = B[S = k|s"= r]

k+u -1 r-k+u -1 K r j+uA—l r-j+uB—1

A B j
=070 _ oL (T IR 2
U, 1 Uy 1 5=0 Uy 1 Uy 1
n
where X = (1—qAA)(l—qu).
A
Under 9y =9« A =1 and the distribution with r a nonnegative
integer and x =0,1,...,r, is
X
(71) G(x|r) = PIS™ <x|s=1r] = L g(k|r).

k=0
The o-level test is proposed:

(72) Reject Hy in favor of H, if and only if G(s"|S) > l-o.

In the simplest case, Uy = Uy = 1, the power can be bounded as follows:

Theorem 7: Assume that U, =ug = 1, n, and n, are positive integers and

0 < o £%. Then

T \"w-\—w
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(73) (@ ©+ (l-qy (- )T <k = PIG(sP]s) > 1-a)
n - - n
< (-g g By (1oq Byiiq ML,
where 6= o " -1 and K_= PIG(S"|S) > 1-al.

Remark 5. The lower bound is exact if « =%, and for « small, approximately

n
(74) 6> <K, < q° / (g
Proof. Since U, = ug = 1, G(x|r) = (x+1)/(r+1), x = 0,1,...,r.

Thus K_ = pro(sP+1) > sB). since

(75) P(Reject Hy|s"= k] = B[S+ 1 > k]
n
= (1q %),

n n
and the latter is bounded below by (1-g ®)® and above by (1-q 2)%1

KQ is seen to satisfy the bound stated upon averaging over the values of SB.
In view of the interesting outcome of the clinical study by Bartlett et al
(1985), Cornell et al (1986), performance values with dp close to zero are
presented in the Table. Of course, the power is conserved upon truncation of
the favored treatment since the success counts are cumulative. So the null
hypothesis could still be rejected without ever completing a generation on the
better treatment. If it appears that qy = 0 may be true, as in the afore-

mentioned study, then the trial may be concluded at any point after the

specified generation point is reached on treatment B. Of course at least

Upng trials shall be run on treatment B with regenerative sampling.
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TABLE

Iterative Play-the-Winner

N 1, qp = .04 and 9 = o]
Mg :
HO. I 2 SEE Hl. dp < Ay
ASNA = 25
K
ny 95 ASNB o=,01 ¢ o=.05 o=.50
LB UB LB UB

1 .80 1.25 .80 .84 .88 .92 .99
2 .64 2.81 .64 .67 .76 .80 .98
3 .512 4.77 .52 .54 .66 .69 .96
5 .328 10.25 .33 .35 .47 .49 .92
8 .168 24.80 .17 .18 .27 .28 .83
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for a maximum likelihood estimator of the mean response. A conditional test of hypothesis
is given for the binary case.
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